Data Scientist y Data Analyst: De Cero a Experto en 12 Meses

¡Bienvenido al desafío de un año para dominar la Ciencia de Datos y el Análisis de Datos! ¿Te imaginas adquirir habilidades que te permitan extraer información valiosa de grandes conjuntos de datos en solo 12 meses? ¡Es posible!

En este artículo te daremos una guía paso a paso y mes a mes desde nivel cero hasta nivel avanzado de los temas y herramientas en los que debes enfocarte para convertirte en Data Scientist o Data Analyst y puedas obtener tu primer trabajo como Data Scientist Junior o Data Analyst Junior.

Puedes encontrar una gran variedad de recursos educativos completamente gratuitos. Desde tutoriales en video hasta cursos completos en línea, hay opciones para todos los intereses y niveles de experiencia. Acá te dejaremos algunas opciones para que puedas encontrar esta información totalmente gratuita.

 

Mes 1. Python Básico

Python es un excelente lenguaje de programación para comenzar tu viaje en el mundo de la programación. Python es un lenguaje de programación de alto nivel, fácil de leer y escribir, que se utiliza en una amplia variedad de aplicaciones, desde el análisis de datos hasta la creación de sitios web y aplicaciones móviles.

Aprender Python puede ser una experiencia gratificante y emocionante, y una vez que domines los conceptos básicos, estarás en el camino correcto para convertirte en un programador habilidoso.

A continuación, se listan los principales temas que debes estudiar para a aprender Python desde cero.

Sintaxis básica de Python

La sintaxis se refiere a las reglas y convenciones que se utilizan para escribir código Python válido y efectivo. Aprender la sintaxis básica de Python te permitirá comprender cómo funciona el lenguaje, declarar variables, utilizar operadores y estructuras de control de flujo como if-else y bucles. Puedes aprender la sintaxis básica de Python a través de tutoriales en línea, libros, cursos en línea y programas de certificación. Hay una amplia variedad de recursos disponibles, incluyendo Codecademy, Coursera y el tutorial oficial de Python.

Tipos de Datos

Cada tipo de dato representa un tipo específico de información y se utiliza de manera diferente. 

En este Link podrás encontrar la documentación sobre los tipos de datos.

Estructuras de control de flujo

Aprender las estructuras de control de flujo en Python es fundamental para crear programas efectivos y eficientes. Estas estructuras permiten controlar el flujo de ejecución del código, tomar decisiones basadas en diferentes condiciones, iterar sobre una serie de valores y manejar excepciones y errores. Esto te permitirá crear programas más complejos y avanzados, y te ayudará a resolver problemas de programación con mayor facilidad.

En este Link podrás encontrar documentación oficial y ejemplos de Python sobre estructuras de control.

Estructuras de datos

Python proporciona una amplia variedad de estructuras de datos que se pueden utilizar para representar y almacenar diferentes tipos de información. 

En este Link podrás encontrar documentación oficial de Python para estructuras de datos.

Definición de Funciones

Las funciones en Python son bloques de código reutilizable que realizan una tarea específica y pueden ser llamados desde cualquier lugar del programa. Son una parte fundamental de la programación ya que permiten modularizar y simplificar el código, evitando la repetición innecesaria de tareas y facilitando el mantenimiento y la escalabilidad del programa.

 

Mes 2. Estadística Y Probabilidad

La estadística y la probabilidad son herramientas fundamentales para cualquier persona que aspire a convertirse en un científico o analista de datos. Estos campos de estudio nos permiten comprender y describir la variabilidad en los datos, así como hacer inferencias y tomar decisiones basadas en evidencia. Desde la creación de modelos predictivos hasta la identificación de patrones y tendencias, la estadística y la probabilidad son esenciales en el mundo actual de la ciencia de datos. Al dominar estos conceptos y técnicas, se puede explorar y analizar datos complejos para descubrir conocimientos ocultos y tomar decisiones bien informadas.

En este Link podrás encontrar un curso interesante en YouTube para empezar a aprender Estadística y Probabilidad desde cero.

 

Mes 3. Python Avanzado

Python avanzado te permitirá ampliar tus habilidades de programación para crear aplicaciones más complejas y escalables. Podrás explorar nuevos temas como la programación orientada a objetos, la creación de módulos y paquetes, el uso de decoradores y la manipulación avanzada de strings y archivos.

Con Python avanzado, podrás dar un gran paso en tu carrera como desarrollador de aplicaciones de Ciencia de Datos y Machine Learning.

En este Link podrás encontrar un curso interesante en YouTube a aprender técnicas de Python avanzado.

 

Mes 4. Visualización

La visualización de datos es crucial para procesar y comunicar información de manera efectiva en la era digital. A medida que los datos continúan creciendo en complejidad y volumen, dominar las herramientas de visualización se vuelve cada vez más esencial en el campo del análisis de datos. Además, aprender a utilizar estas herramientas puede aumentar tu valor en el mercado laboral.

Existen una variedad de herramientas para la visualización de datos disponibles, cada una con sus propias ventajas y desventajas. Al elegir una herramienta, es importante evaluar tus necesidades para asegurarte de que se ajuste a tus objetivos y requerimientos. 

Existes técnicas de visualización de datos usando Python con librerías como Matplotlib, Seaborn o Plotly, pero también hay herramientas avanzadas para hacer visualizaciones dinámicas como Power BI y Tableau.

En los siguientes enlaces podrás encontrar un curso interesante en YouTube de Power BI, Tableau y librerías de Python para visualización de datos.

 

Mes 5. Machine Learning

Si quieres convertirte en un Científico de Datos exitoso, debes tener un sólido conocimiento de las técnicas de Machine Learning (ML). Estas técnicas pueden ayudarte a predecir resultados, clasificar datos, agrupar información y reducir la dimensionalidad de los datos. Las técnicas más importantes de ML que todo Científico de Datos debería conocer van desde la clásica regresión lineal hasta la poderosa Red Neuronal.

En YouTube, hay muchos recursos útiles y gratuitos para aprender Machine Learning. Uno de ellos es el curso “Machine Learning for Everyone” de Andrew Ng. Este es un curso introductorio que es adecuado tanto para principiantes como para aquellos que tienen cierta experiencia en programación y matemáticas.

En este Link también podemos encontrar este curso interesante en español.

 

Mes 6. Manipulación de Datos

En la era actual de la información, la manipulación y análisis de datos es una habilidad imprescindible para cualquier persona que quiera tener éxito en el mundo de los datos y la tecnología. Python, un lenguaje de programación de alto nivel, ha demostrado ser una herramienta invaluable para la manipulación y análisis de datos. Con una variedad de librerías y herramientas disponibles, Python ha sido ampliamente adoptado en la comunidad de ciencia de datos como uno de los lenguajes preferidos para el procesamiento y análisis de datos.

Conocer las herramientas de Python para la manipulación de datos es esencial para tu éxito como profesional de la ciencia de datos. Algunas herramientas son librerías de Python como Numpy. Pandas y Dplyr de R.

Algunos tutoriales interesantes los puedes ver este Link.

 

Mes 7. Implementación y Distribución

Aprender sobre la implementación y distribución de modelos de ML es importante porque los modelos de ML no son útiles si no se pueden poner en producción.

La implementación y distribución de modelos de ML es un proceso complejo que requiere una comprensión profunda de la infraestructura subyacente, las herramientas de desarrollo y las buenas prácticas de ingeniería de software.

Aprender sobre estos temas puede ayudar a los profesionales de ML a crear modelos que sean escalables, mantenibles y que se puedan implementar en una variedad de entornos. Además, la implementación y distribución de modelos de ML es una habilidad valiosa para tener en el mercado laboral, ya que cada vez más empresas buscan implementar modelos de ML en sus productos y servicios.

Algunos cursos interesantes los puedes encontrar en Coursera, EDx y Udemy. En el siguiente enlace encontraras un interesante curso sobre MLOps los puedes ver este Link.

 

Mes 8. Deep Learning

Aprender Deep Learning es importante porque es una de las áreas más prometedoras de la inteligencia artificial.

El Deep Learning ha demostrado ser muy efectivo en una variedad de tareas, como el reconocimiento de imágenes, el procesamiento del lenguaje natural y en juegos de estrategia. Además, el Deep Learning es una habilidad altamente valorada en el mercado laboral, ya que muchas empresas están buscando profesionales capacitados en esta área.

Al dominar las herramientas y tecnologías necesarias para el Deep Learning, podrás desarrollar modelos más efectivos y avanzados, así como implementarlos en una variedad de aplicaciones.

Puedes guiarte del siguiente tutorial totalmente gratuito en YouTube para iniciarse en el Deep Learning. También encontraras un curso interesante sobre Deep Learning con Tensorflow en este enlace ofrecido por Google.

 

Mes 9. Visión Artificial y Procesamiento de Lenguaje Natural

Aprender visión por computador es importante porque se utiliza en una amplia variedad de aplicaciones, desde la detección de objetos en imágenes y videos hasta la robótica y la realidad aumentada.

Al dominar las herramientas y tecnologías necesarias para la visión por computador, podrás desarrollar aplicaciones avanzadas en estas áreas y mejorar la eficiencia y precisión de las tareas automatizadas que implican procesamiento de imágenes.

Otras herramientas interesantes son las basadas en Procesamiento de Lenguaje Natural con una amplia variedad de aplicaciones, desde chatbots y asistentes virtuales hasta la clasificación de texto y el análisis de sentimiento en redes sociales.

El procesamiento de lenguaje natural es una habilidad valiosa en el mundo de la tecnología de hoy en día, y puede ser útil en una amplia variedad de industrias, incluyendo la atención médica, la educación y el marketing digital.

Puedes iniciarte en el mundo de la visión artificial y el procesamiento de imágenes con este curso ofrecido por IBM. Por otro parte, este curso te dará las bases para iniciarte en el procesamiento de lenguaje natural.

 

Mes 10. Proyecto

Es importante trabajar en proyectos que te permitan aplicar los conocimientos teóricos en problemas reales. Estos proyectos pueden ayudarte a desarrollar habilidades técnicas, analíticas y de comunicación necesarias para ser un buen Data Scientist.

En cuanto a dónde y cómo hacer estos proyectos, hay varias opciones.

Puedes encontrar numerosos conjuntos de datos públicos en línea y trabajar en ellos. También hay plataformas en línea que ofrecen proyectos y desafíos para que los usuarios resuelvan. Ejemplos de esto son Kaggle, Analytics Vidhya y DataCamp.

Crear un portafolio es una excelente manera de demostrar tus habilidades y experiencia en el campo de la ciencia de datos. 

Cuando los empleadores buscan contratar a un Data Scientist, quieren ver evidencia de que puedes aplicar tus habilidades a situaciones reales. Un portafolio te permite presentar tus proyectos en un formato accesible y fácil de entender, lo que hace que sea más fácil para los empleadores evaluar tus habilidades.

Un buen portafolio debe incluir varios proyectos que muestren tus habilidades y experiencia en diferentes áreas de la ciencia de datos, como la limpieza de datos, análisis exploratorio, visualización de datos, modelado predictivo, y aprendizaje automático. También es importante que tu portafolio incluya una descripción clara y concisa de cada proyecto, así como una explicación de cómo tus habilidades y conocimientos fueron aplicados en el proyecto.

 

Mes 11. Preparación para la entrevista

Prepararse adecuadamente para una entrevista para un puesto como científico de datos o analista de datos es crucial para tener éxito en la búsqueda de empleo en el campo de la ciencia de datos. 

Cómo prepararse para una entrevista: Aquí unos cuantos tips.

Investiga sobre la empresa: Investiga sobre la empresa para la que estás aplicando y su industria, para poder entender mejor sus necesidades y objetivos.

Conoce el puesto: Investiga sobre el puesto que estás solicitando para saber qué habilidades y conocimientos son necesarios para desempeñar el trabajo.

Prepara ejemplos de proyectos: En este punto ya deberás tener tu primer proyecto realizado en el mes 10. Prepara los proyectos en los que has trabajado y que puedan demostrar tus habilidades y conocimientos en el campo de la ciencia de datos.

Practica habilidades técnicas: Si te pidieron realizar una prueba técnica, practica tus habilidades técnicas, como la limpieza de datos, análisis exploratorio, visualización de datos, modelado predictivo, aprendizaje automático y la toma de decisiones basada en datos.

Prepara respuestas a preguntas comunes: Practica tus respuestas a preguntas comunes que se suelen hacer en las entrevistas de trabajo, como preguntas sobre tu experiencia previa, tus fortalezas y debilidades, y por qué quieres trabajar para la empresa.

En este enlace encontraras algunos tips interesantes sobre como abordar tu primera entrevista en Data Science.

 

Mes 12. Aplicación a Trabajos

Existen varias plataformas en línea donde puedes buscar trabajos como científico de datos o analista de datos. Aquí te presento algunas opciones:

LinkedIn: Es una red social profesional que permite buscar y aplicar a trabajos en línea. Puedes buscar trabajos utilizando palabras clave como “científico de datos“, “analista de datos“, “ciencia de datos“, y “análisis de datos“. También puedes seguir a empresas y publicaciones relacionadas con el campo de la ciencia de datos para estar actualizado sobre las últimas oportunidades de empleo.

Indeed: Es un motor de búsqueda de empleo que te permite buscar trabajos en línea. Puedes buscar trabajos utilizando palabras clave y aplicar directamente desde el sitio web.

Glassdoor: Es un sitio web que te permite buscar trabajos, investigar sobre empresas y ver los salarios de los empleados. Puedes buscar trabajos utilizando palabras clave y aplicar directamente desde el sitio web.

Freelancer: Es una plataforma que conecta a trabajadores independientes con empleadores que buscan proyectos específicos. Puedes buscar proyectos de ciencia de datos y aplicar directamente desde la plataforma.

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *